.

.

СНиП 21 01 97* «Пожарная безопасность зданий и сооружений» при устройстве фасадов зданий

Для ввода объекта в эксплуатацию согласно ст.54 и 55 Градостроительного кодекса РФ необходимо получение заключения органов Госстройнадзора (ГСН) о соответствии требованиям технических регламентов и проектной документации (до 01.01.2007г. эти полномочия осуществлялись органами Госпожнадзора).

С 01 января 2006 года вступила в силу статья 49 Градостроительного кодекса Российской Федерации (с изменениями, внесенными Федеральными Законами № 199-ФЗ, № 210-ФЗ и №232-Ф3) о проведении государственной экспертизы проектной документации, а значит и по ФС. За исключением особо опасных, технически сложных и уникальных объектов (федеральный уровень), такая экспертиза должна проводиться соответствующим органом исполнительной власти (Главгосэкспертиза или ГГЭ) субъекта Российской Федерации. При этом следует учесть, что согласно ст.6 ч.11 ФЗ «О пожарной безопасности» (в редакции согласно ФЗ №232-Ф3) при строительстве государственный пожарный надзор осуществляется в рамках государственного строительного надзора.

В связи с названными изменениями законодательной базы имеется письмо МЧС России от 28 декабря 2006 года № 43-4357-19, где отмечено, что при обращении заинтересованных юридических и физических лиц по вопросам соответствия объектов строительства, реконструкции и капитального ремонта требованиям ПБ органы ГПН в своих ответах должны делать запись об их консультационном характере.

Следует принять во внимание, что Кодексом Российской Федерации об административных правонарушениях (статьи 9.4, 9.5, 19.5 и др. в редакции ФЗ 232 –ФЗ от 18 декабря 2006 года) предусмотрены весьма серьезные санкции за несоблюдение требований органов ГСН, вплоть до административного приостановления деятельности юридических лиц на срок до 90 суток.

Пожары в высотных зданиях с тяжелыми последствиями (106-метровая Виндзорская башня в Мадриде, февраль 2005 года; 32-этажное здание «Траспорт-Тауэр» в Астане, май 2006 года; офисный центр в Москве, март 2007 года и др.), приведенные в /31/, показывают несовершенство соответствующих нормативных документов, необходимость индивидуального подхода к проектированию систем противопожарной защиты таких зданий, начиная с разработки специальных технических условий (СТУ– согласно постановления Правительства РФ от 18 февраля 2008 года № 87 «О составе разделов проектной документации и требованиях к их содержанию»), в том числе, в части требований к фасадным системам (ФС).

В связи с принятием ФЗ № 232-ФЗ от 18 декабря 2006 года, а также подписанием приказа МЧС России от 16 марта 2007 года № 141 (зарегистрирован Министерством юстиции РФ 29 марта 2007 года, рег. № 9172) следует отметить, что упомянутые СТУ для зданий (сооружений), на которые отсутствуют противопожарные нормы, для жилых домов высотой более 75м, других зданий высотой более 50м, для особо сложных и уникальных зданий подлежат согласованию с Управлением ГПН (в настоящее время – Департаментом надзорной деятельности) МЧС России с последующим согласованием с Минрегионом России в соответствии с приказом от 01 апреля 2008г. № 36 «О порядке разработки и согласования специальных технических условий для разработки проектной документации на объект капитального строительства» (зарегистрирован Министерством юстиции РФ 11 апреля 2008 года, рег. № 11517). В случае, если проектными решениями предусматриваются ФС, особенно с воздушным зазором, представляется, что в составе СТУ должен быть раздел требований к таким ФС, в том числе по пожарной безопасности. Подтверждением этого является «Положение о технических условиях на проектирование и строительство уникальных, высотных и экспериментальных объектов капитального строительства в городе Москве» (утверждено В.И.Ресиным 01 октября 2007 года, согласовано Москомархитектурой, Мосгосэкспертизой, Мосстройнадзором), где в п.3.2 и приложении Б приведены общие требования к содержанию раздела СТУ по конструктивным решениям ФС, включая мероприятия по мониторингу ФС и их эксплуатации. При этом применение конструкций ФС является характеристикой (п.5 приложения А), когда объект является экспериментальным и на него распространяется действие вышеназванного Положения. Отмечая необходимость мониторинга ФС, следует учесть, что тогда он должен быть составной частью структурированной системы мониторинга и управления инженерными системами зданий и сооружений (СМИС) в соответствии с ГОСТ Р 22.1.12-2005 /42/. Для объектов г. Москвы СМИС следует предусматривать в соответствии с требованиями постановления Правительства Москвы от 6 мая 2008г. № 375-ПП «О мерах по обеспечению инженерной безопасности зданий и сооружений и предупреждению чрезвычайных ситуаций на территории города Москвы».

Согласно п. 5 «Положения о составе разделов проектной документации и требованиях к их содержанию», утвержденного постановлением Правительства РФ от 16.02.2008г. № 87 «О составе разделов проектной документации и требованиях к их содержанию», в случае, если для разработки проектной документации на объект капитального строительства недостаточно требований по надежности и безопасности, установленных нормативными техническими документами, или такие требования не установлены, разработке проектной документации должны предшествовать разработка и утверждение в установленном порядке СТУ (см. также письмо Минрегиона России от 03.07.2008г. № 15986-CК/08). В полной мере данное положение относится к проектированию ФС.

Опираясь на ФЗ № 232-ФЗ от 18 декабря 2006 года, а также с учетом вышеизложенного можно утверждать, что на практике при применении ФС неизбежен этап государственной экспертизы соответствующего раздела проектной документации (ПД) согласно постановления Правительства Российской Федерации от 05 марта 2007 года № 145. Тем не менее, в органы ГПН, несмотря на изъятие полномочий по рассмотрению ПД, целесообразно в любом случае еще на стадии проектирования обратиться за консультативной помощью, ведь после ввода объекта в эксплуатацию органы ГПН будут по-прежнему осуществлять мероприятия по надзору в соответствии с Административным регламентом, утвержденным приказом МЧС России от 01 октября 2007г. № 517.

С 1 мая 2009 года вступил в силу Федеральный закон № 123-ФЗ от 22.07.2008г. «Технический регламент о требованиях пожарной безопасности», в котором противопожарные требования при применении ФС отсутствуют. В этом случае следует руководствоваться ст.78 названного ФЗ, согласно которой при отсутствии нормативных требований пожарной безопасности для проектируемых зданий, сооружений, строений должны быть разработаны СТУ, отражающие специфику обеспечения их пожарной безопасности и содержащие комплекс необходимых инженерно-технических и организационных мероприятий по обеспечению пожарной безопасности. При наличии соответствующих требований к ФС в других нормативных документах (национальных стандартах, сводах правил) согласно ст.2 Федерального закона № 184-ФЗ от 27.12.2002г. «О техническом регулировании» (в редакции Федерального закона № 65-ФЗ от 01.05.2007г. «О внесении изменений в ФЗ «О техническом регулировании») они подлежат применению на добровольной основе. Таким образом, следует считать, что в отношении применения ФС (даже при выполнении других обязательных требований пожарной безопасности, установленных федеральными законами о технических регламентах) требование по разработке для объекта защиты СТУ является носящим законодательный характер. Исключением может являться вариант, если для ФС будет принят специальный технический регламент, содержащий требования пожарной безопасности.


Действующими строительными нормами и правилами (СНиП 21 01 97* «Пожарная безопасность зданий и сооружений») ограничивается применение в строительстве горючих строительных материалов, в том числе при устройстве фасадов зданий.

Делается это дифференцированно, с учетом реально возможных угроз для безопасности людей и имущества при пожаре, пожарно-технических характеристик материалов. (Групп горючести Г1–Г4, воспламеняемости В1–В3 и др. свойств), количества этих материалов в составе строительных конструкций, условий применения (степень защиты от огня), а также от степени огнестойкости, класса конструктивной и функциональной пожарной опасности зданий, то есть назначения и объемно-планировочных параметров зданий по высоте, площади пожарных отсеков ит.д.


Об особенностях применения горючих материалов в составе НФС

Применительно к фасадам зданий в СНиП установлено, что в зависимости от степени огнестойкости, классов конструктивной и функциональной пожар¬ной опасности зданий стены с внешней стороны могут иметь классы пожарной опасности КО, К1, К2 иК3. Для некото¬рых типов зданий этот показатель вообще не нормируется.


Пожарная опасность конструкций навесных фасадных систем зависит от многих факторов, поэтому класс пожарной опасности систем определяется огневыми испытаниями крупномасштабных образцов систем по ГОСТ 31251-2003 «Конструкции строительные. Метод определения пожарной опасности. Стены наружные с внешней стороны» или экспертными заключениями на основе результатов предыдущих испытаний систем, аналогичных по конструктивному исполнению и номенклатуре применяемых материалов. Пригодность конструкций фасадных систем для применения в строительстве и область их применения сточки зрения пожарной безопасности подтверждается на основе этих испытаний и заключений в комплексе с другими характеристиками, техническими свидетельствами (ТС) Мин региона России в соответствии с действующими нормативными правовыми актами.


Большинство конструкций фасадных систем, на которые выданы ТС, имеют класс пожарной опасности КО, который обеспечивается применением для устройства систем полностью негорючих материалов при условии, что в процессе огневого воздействия соблюдаются установленные стандартом требования к ме¬ханической устойчивости и допускаемым повреждениям фасада. Вместе с тем, при соответствующих проектных решениях, описанных в ТС, класс пожарной опасности КО может быть обеспечен в некоторых случаях также и при применении в ограниченном объеме горючих материалов, обладающих определенными пожарно-техническими свойствами. Необходимость или целесообразность применения изделий из горючих материалов может вызываться соображениями архитектурной выразительности, конструктивно-технологическими или экономическими требованиями. Реальная пожарная опасность композитных облицовочных панелей с алюминиевыми обшивками и ветрогидрозащитными мембранами характеризуется следующими данными.

1. Композитные облицовочные панели являются изделиями, которые изготавливаются с применением горючих полимерных материалов во внутреннем (среднем) слое и обшивок из негорючих материалов с различными свойствами, в том числе из алюминиевых сплавов. Средний слой может иметь различный состав, как полностью полимерный (например, полиэтилен), так и многокомпонентный с различным соотношением полимерных и минеральных составляющих.

Для оценки пожарно-технических свойств композитных панелей часто используется ГОСТ 30244 «Материалы строительные. Методы испытаний на горючесть». При испытаниях по этому стандарту образцы практически всех известных композитных панелей со средним слоем, полностью состоящим из по¬лимерных материалов, относятся к группе горючести Г4. Навесные фасадные системы с такими панелями имеют высокую пожарную опасность, соответствующую классу К3. Применение таких облицо¬вок для зданий высотой более одного или двух этажей строительными нормами не допускается и в технических свиде-тельствах на фасадные системы не предусматривается.

Образцы композитных панелей с многокомпонентным средним слоем при испытаниях по ГОСТ 30244 относятся, как правило, к группе горючести Г1. При этом класс пожарной опасности конструкций с такими панелями при проведении огневых испытаний фрагментов систем по ГОСТ 31251 может быть различным— К0 до К3. Следовательно, применение в навесных фасадных системах композитных панелей, относящихся к одной группе горючести— Г1, даже при полной конструктивной идентичности навесных фасадных систем не гарантирует идентичность классов их пожарной опасности.

Это объясняется различиями в методиках огневых испытаний материалов по ГОСТ 30244 и испытаний конструкций систем по ГОСТ 31251, при которых свой¬ства композитных панелей проявляются по-разному. Так, мощность и продолжительность огневого воздействия на образцы материала панелей при испытаниях по ГОСТ 30244 существенно ниже мощности и продолжительности време¬ни огневого воздействия на эти панели при испытаниях конструкций систем по ГОСТ 31251, воспроизводящего температурный режим среднестатистического пожара в жилом помещении. Учитывая при этом, что температура возможного воспламенения и теплота сгорания материалов среднего слоя у различных панелей изменяются в достаточно широких пределах, они по-разному реагируют на повышенное воздействие огня.

Поэтому пожарная безопасность конструкций фасадов с композитными панелями должна оцениваться при испытаниях по ГОСТ31251 или на основании экспертных заключений, подготавливаемых компетентными в области пожарной безопасности организациями по результатам ранее проведенных испытаний аналогичных конструкций систем с применением аналогичных типов композитных панелей. Что и делается для подготовки технических свидетельств о пригодности (ТС).

Случаи возгорания композитных панелей на объектах имели место вследствие допущенных нарушений приведенных в соответствующих ТС условий их применения и конструктивных решений фасадных систем, включая неправомерную замену одних типов и марок панелей на другие со ссылкой на то, что и те и другие относятся к группе горючести Г1 по ГОСТ 30244.


Нормативные требования

Общие требования к конструкции ФС установлены СНиП 23-02-2003 /43/ и приложением к СП 23-101-2000 /44/. Требования пожарной безопасности, предъявляемые к системам наружного утепления фасадов, в т.ч. и к навесным ФС, установлены СНиП 21-01-97*. Требования ко всей ФС и каждому её элементу должны быть отражены в техническом свидетельстве, выдаваемом ФГУ «Федеральный центр сертификации» Росстроя. На основе натурных огневых испытаний ЦНИИСК им.В.А.Кучеренко и ВНИИПО МЧС России разработан ГОСТ 31251-2003 /41/, где установлены классы пожарной опасности наружных стен при наличии внешней изоляции, отделки толщиной более 0,5мм, оклейки и облицовки.

Требования стандарта /41/ не распространяются, в частности, на наружные стены из светопрозрачных конструкций. Особенно сложным проведение экспертизы представляется в случае, когда здание целиком одевается в светопрозрачную оболочку. Для такого архитектурного и конструктивного решения требования пожарной безопасности в «Техническом регламенте о требованиях пожарной безопасности», СП 2.13130.2009 /56/, СП 4.13130.2009 /57/ по существу отсутствуют. Согласно п.7.9 МГСН 4.19-2005 при площади светопрозрачных ограждений более 50% площади наружных ограждений требуется технико-экономическое обоснование. Однако, на практике при проектировании и строительстве современных общественных зданий (все чаще также и высотных жилых зданий) площадь светопрозрачной оболочки ФС достигает 100% /53/. В этом случае одной из основных проблем, кроме снижения теплопотерь, являются требования по обеспечению пределов огнестойкости такого остекления на основании табл.21 приложения к ФЗ №123-ФЗ (ранее по табл.4* п.5.18* CНиП 21-01-97*), когда для зданий I степени огнестойкости для наружных ненесущих стен этот показатель должен быть Е30, для II – IV степеней огнестойкости – E15. В нормативных документах по пожарной безопасности, как уже отмечалось выше, эта проблема не решена, т.к., например, для ленточного остекления (при отсутствии ограничений по его площади) по п.4.1.7 МДС 21-1.2000 /46/ требуется только, чтобы противопожарные стены разделяли остекление (допускается, чтобы противопожарная стена не выступала за наружную плоскость стены). Аналогично, по существу, требование по противопожарным перекрытиям (п.4.2.1 МДС 21-1.2000), с дополнением, что их примыкание к наружным стенам из негорючих материалов (НГ) должно быть без зазоров, а в местах пересечения целесообразно устраивать козырьки, что и нашло отражение в п.14.30 МГСН 4.19-2005. Иными словами, требований по пределу огнестойкости собственно остекления не предъявляется, а при наличии противопожарных стен и перекрытий в местах их пересечения (примыкания) к остеклению (в т.ч. сплошному) можно было бы говорить о необходимости соблюдения требования табл.21 приложения к ФЗ №123-ФЗ, т.е. по обеспечению предела огнестойкости Е 30 или Е 15, но не всего остекления, а только его части в местах примыкания к противопожарным преградам на высоту, например, этажа или на конкретное расстояние.

В статье /53/ приводится обзор нормативных документов стран Евросоюза, США, Китая в отношении фасадных систем, включая требований к их испытаниям, контролю качества их изготовления и монтажа, обеспечению безопасной эксплуатации (в статье /54/ указывается норматив 50 лет – до первого капитального ремонта здания), однако вопрос огнестойкости, к сожалению, упущен полностью. В качестве основного вывода в статье /53/ называется необходимость разработки единых норм на фасадные конструкции, включая их классификацию, основные требования к комплектующим и конструкции в целом, методам их комплексных испытаний, проверки качества при возведении зданий.

Рассмотрим некоторые аспекты этой проблемы на основе анализа ряда нормативных документов (НД).

В п.14.30 МГСН 4.19-2005 для предотвращения распространения пожара по фасаду предусмотрено:

устройство в уровне противопожарных перекрытий козырьков и выступов шириной не менее 1м из негорючих материалов (от автора – с точки зрения архитектуры здания и эксплуатации ФС, видимо, не самое эффективное конструктивное решение);

защиту оконных проемов устройствами, которые перекрывают их при пожаре (от автора – далее ни в одних НД по ПБ или в других документах это техническое решение не уточняется, тем более не рассматривается система приведения таких устройств в действие, что должно быть, видимо, увязано с системами автоматической пожарной сигнализации и в целом с автоматизированной системой управления зданием согласно п. 13.2.14 МГСН 4.19-2005). Можно предположить, что одним из конструктивных решений может являться использование подъемно-опускных огнестойких штор (например системы Fibershield, описанной в статье /30/) , однако в НД этот вопрос по существу упущен.

Несмотря на ограниченные возможности, предоставляемые проектировщику названными требованиями, например, в ТСН 31-332-2006 Санкт-Петербург «Жилые и общественные высотные здания» (п.16.4.5) требование сформулировано более жестко, но с конструктивной точки зрения неопределенно и неэффективно, а с позиции архитектуры зданий – невыполнимо: «… сплошное остекление должно прерываться противопожарными стенами и перекрытиями». Очевидно, исходным положением для такого требования являются п.4.1.7 и п.4.2.1МДС 21-1.2000 /46/, где записано, что «при устройстве наружных стен из материалов группы НГ с ленточным остеклением противопожарные стены должны разделять остекление», а «противопожарные перекрытия в зданиях с наружными стенами классов К1, К2 и К3 или с остеклением, расположенным в уровне перекрытия, должны пересекать эти стены и остекление». Представляется, что такое конструктивное требование не может являться достаточным для выполнения п.5.12СНиП 21-01-97*, где указывается, чтобы противопожарные преграды предназначались «…для предотвращения распространения пожара и продуктов горения из помещения или пожарного отсека с очагом пожара в другие помещения».

В п.6.3.1 МГСН 4.19-2005 определено, что в случае применения ФС с воздушным зазором согласовать материалы с органом ГПН на стадии «Проект» (аналогично звучит п.16.3.5 ТСН 31-332-2006 Санкт-Петербург) и предусмотреть мероприятия по предотвращению распространения огня и разрушению (обрушению) конструкции или элементов фасада при пожаре (п.6.3.10 МГСН 4.19-2005). Однако собственно состав таких мероприятий в этих и других нормах отсутствует. Вместе с тем, органы ГПН до начала 2007 года при выдаче заключений по объектам должны были установить их соответствие требованиям НД по пожарной безопасности. Как уже отмечалось, с 01 января 2007 года такие полномочия у органов ГПН отсутствуют. Вместе с тем, органы ГГЭ должны установить соответствие проектной документации требованиям НД по пожарной безопасности (СТУ – это нормативный документ для проектирования систем обеспечения пожарной безопасности конкретного объекта и его следует согласовать с ДНД МЧС России и Минрегионом России на основании приказа МЧС России от 16.02.2007г. №141 и приказа Минрегиона России от 01.04.2008г. №36 (ранее по п.1.5* СНиП 21-01-97*). При этом органы ГСН смогут контролировать при строительстве исполнение заложенных в НД и проектной документации конструктивных и инженерных решений.

Следует также заметить, что противопожарные требования к ФС, согласно ст.46 ФЗ №184 от 27.12.02г. «О техническом регулировании», следует отнести к категории обязательных для исполнения требований, поскольку они имеют непосредственное отношение к обеспечению безопасности людей (причем, не только находящихся собственно в объекте, а и прохожих, участников тушения пожара и др.) и чужого имущества (например, припаркованных транспортных средств, городских коммуникаций энергообеспечения и связи, пожарной техники и т.п.). Данное обстоятельство целесообразно учесть при подготовке, например, Технического регламента «О безопасности зданий и сооружений», корректировке других нормативных документов.

Некоторые современные фасадные системы


В зависимости от вида облицовок ФС подразделяются на системы: с керамогранитной облицовкой; облицовкой композитными материалами на основе алюминия (алюкобонд, рейнобонд, алполик и др.); облицовкой в виде цементно-волокнистых листов (фиброцемент, асбестоцемент); металлическими облицовками в виде сайдингов, кассет, панелей и др.

Особенности пожарной опасности ФС достаточно детально рассмотрены в статье /29/, включая:

штукатурные системы наружного утепления фасадов, где в качестве утеплителя обычно используется плитный пенополистирол (ППС) и некоторые виды полиуретанов (ППУ). Механизм пожарной опасности состоит в том, что при тепловом воздействии на ФС происходит термодеструкция ППС с выделением горючих газов, которые через слой штукатурки попадают в факел пламени, увеличивая его высоту и способствуя распространению горения на вышерасположенные этажи. Другой аспект – при пожаре слой штукатурки разрушается, обеспечивается свободный доступ кислорода к ППС и происходит его воспламенение с выделением большого количества тепла и токсичных продуктов. Поэтому рекомендуется всегда применять окантовки оконных (дверных) проемов и, иногда, противопожарные поэтажные рассечки из негорючих минераловатных плит с температурой плавления не менее 1000 град.С (стекловолокнистые плиты не допускаются, т.к. их температура плавления не более 550 град.С). Подчеркивается также важность показателя «трещиностойкость» штукатурки и что единственным способом оценки его влияния на пожарную опасность ФС являются огневые испытания ФС по ГОСТ 31251-2003;

навесные вентилируемые фасады (НВФ), где одной из особенностей пожарной опасности отмечается применение в качестве гидроветрозащиты утеплителя либо минераловатных плит с наружной поверхностью из стекловолокна («кашированные» плиты), либо специальная паропроницаемая полимерная пленка. Из числа выводов, которые не рассмотрены далее в настоящей статье, по результатам огневых испытаний указывается, что применение в НВФ облицовок в виде плоских элементов из трехслойных изделий из алюминиевого листа со средним слоем из негорючего материала (группа НГ) на основе гидроокиси алюминия не является опасным; кроме того, при прочих равных условиях использование облицовок из трехслойных панелей с обшивками из алюминиевых листов и средним слоем из полиизоцианурата является более безопасным по сравнению с облицовкой из трехслойных панелей с обшивками из алюминиевых листов и средним слоем из модифицированного полиэтилена.

По информации /37/ в 2007 году городскими застройщиками применение штукатурных фасадов составило почти 5 млн.м2, а навесных фасадных систем – около 6,6 млн.м2 . При этом доля навесных фасадных систем по группам объектов строительства (реконструкции) составила : новые жилые здания – 45%, реконструкция жилья – 35%, торгово-коммерческие объекты (торгово-развлекательные и бизнес-центры, магазины и др.) – 69%, промышленные объекты – 73%, социальные объекты – 68%. Около 31% площади навесных фасадных систем облицовываются волокнисто-цементными и фиброцементными плитами, примерно столько же приходится на керамогранит (32%). Композитные панели и металлокассеты составляют соответственно 20% и 13% площади утепленных фасадов.

В отношении применения ветрозащитных пленок (мембран) отметим статью /32/, где указывается на неоднозначность вывода о необходимости их использования (существенно зависит от структуры волокон утеплителя, а потеря массы утеплителя, по результатам экспериментов на выветривание, достаточно незначительна), а соответствующее решение следует принимать с учетом опыта исследований технологических и горючих свойств ветрозащитных мембран, накопленного Центром противопожарных исследований ЦНИИСК им. В.А.Кучеренко.

В материале /35/ отмечается, что из-за недостаточной квалификации монтажников вместо ветрозащитной пленки устанавливают пленки с большим значением сопротивления паропроницанию, вплоть до полиэтиленовой пленки. При этом ветрозащитные пленки являются изделиями на полимерной основе, относятся к материалам группы горючести Г2 или Г3, которые от воздействия открытого огня активно способствуют развитию горения. Приводится пример возгорания пленки «Тyvek» при проведении сварочных работ на 17-м этаже здания со смонтированной ФС, что привело к распространению огня пожара до первого этажа и к многочисленным повреждениям ФС. Указывается на частое применение открытого огня при проведении ряда работ на здании с уже смонтированным фасадом: кровельные работы на крыше, сварочные работы на балконах и лоджиях, наплавление гидроизоляции на отмостке здания и т.д., поэтому практически весьма сложно исключить возможность возгорания ветрозащитной пленки.

В статье /41/ также указывается, что использование в навесных ФС с воздушным зазором ветрогидрозащитной паропроницаемой мембраны «Тyvek», размещаемой в воздушном зазоре, может привести к скрытому распространению горения. Компенсирующее мероприятие в виде установки стальных сплошных или перфорированных горизонтальных отсечек, перекрывающих воздушный зазор, не всегда эффективно. В связи с этим применение мембраны «Тyvek» в конструкциях навесных ФС с воздушным зазором предлагается ограничить и, по возможности, свести к минимуму. В качестве альтернативы рекомендуется применение утеплителя с кэшировочным слоем группы горючести не ниже Г1 (например, минераловатные плиты «ISOVER Ventiterm Plus»). Если необходимо применить в ФС защитные мембраны, то следует провести поиск других негорючих (НГ) или слабогорючих (Г1) ветрогидрозащитных и паропроницаемых материалов.

В вышеназванных МГСН, других НД по ПБ даже не упоминаются такие, например, прогрессивные технологии, как структурное остекление или планарные фасады.

Структурное остекление /1/– технология крепления стеклопакетов к фасаду здания с помощью силикона, где силиконовый слой является несущим элементом конструкции.

Нагрузки:


  • Собственный вес стеклопакета (постоянная величина);
  • Ветровая нагрузка;
  • Снеговая нагрузка (при наклонном расположении стеклопакетов);
  • Термическое расширение элементов системы как в суточном цикле, так и в годичном.


Принимая во внимание эти и другие параметры (от автора - видимо, должны учитываться и опасные факторы пожара, а также долговечность и ремонтопригодность), производится расчет размеров силиконового соединения. В результате система структурного остекления имеет следующие коэффициенты надежности: для системы в целом – 6, для силиконового герметика – 8. Для сравнения уточняется, что коэффициент надежности обычной стоечно-ригельной фасадной системы, как правило, равен 3 /1/.

В /1/ также отмечается о том, что для получения разрешения на использование герметик должен продемонстрировать уровень приемлемости по всем аспектам, относящимся к механическому сопротивлению, пожарной безопасности (от авторов -: в НД по ПБ не содержится никаких упоминаний по герметикам ФС), гигиене, охране здоровья, защите окружающей среды, безопасности использования, уровню шума и энергетической эффективности. В этой же статье приводятся примеры использования структурного остекления: Европейский парламент в Брюсселе, Французская национальная библиотека в Париже, музей Гугенхайма в Бильбао, стадион футбольного клуба Манчестер Юнайтед, железнодорожный вокзал в Минске, Международный дом музыки, мост Багратиона в Москве, офисные, торговые и жилые комплексы.

Одними из примеров применения фасадов со структурным остеклением являются материалы статьи /55, 56/. В /55/ рассмотрены системы структурного остекленияSchuco, когда создание однородной поверхности фасада происходит за счет наклеивания (используется П-образный силиконовый уплотнитель для плоских конструкций или герметик) остекления (применяются стекла различной толщины с внутренней и наружной сторон толщиной от 6 до 14мм) на несущую cтоечно-ригельную конструкцию, т.е. без видимых снаружи опор. Поля остекления разделяются углубленными швами, а встроенные открывающиеся элементы не нарушают плоскости фасада. Новая фурнитура обеспечивает применение больших открывающихся створок весом до 250кг и 300кг – в глухих полях при изменяющемся положительном и отрицательном давлении ветра.

В /56/ рассматривается продукция линии Pilkington Suncooltm , объединяющая в себе эффективные теплоизоляционные свойства с одним из самых низких U-значений для стеклопакетов и широкими возможностями по солнцезащите. Большая часть продукции выпускается в ударопрочном исполнении, в частности ламинированное стекло Pilkington Optilamtm , состоящее из нескольких слоев стекла и пленки между ними, которые прочно соединены друг с другом. Когда стекло трескается или разбивается, пленка удерживает осколки стекла, снижая риск получения травмы и сохраняя целостность конструкции. Одним из вариантов применения таких стекол, видимо, может быть покрытие атриумов.

С точки зрения теплотехнических характеристик фасадного остекления, нужно сказать, что согласно требованиям СНиП 23-02-2003 /43/ и МГСН 4.19-2005 приведенное сопротивление теплопередаче стены должно быть для Москвы более 3,12 м2 оС/Вт. В статье /53/ отмечается, что разработанные с применением нанотехнологий новые классы низкоэмиссионных покрытий с коэффициентами порядка 0,02 позволяют не просто снизить теплопотери за счет лучистой составляющей, но и в комбинации современной конструкции дистанционной рамки с заполнением пространства между стеклами инертным газом практически вывести фасады по теплотехническим характеристикам на качественно новый уровень.

Планарные фасады /2/ – важнейшим функциональным и архитектурно-строительным элементом является стальная структура. Несущие конструкции фасада могут быть плоскими и пространственными. Плоскими несущими конструкциями служат стальные трубчатые фермы, вертикальные стойки, стержневые и вантовые предварительно-напряженные фермы. Последняя разработка – система вертикально натянутых канатов. Для планарных остеклений, среди прочих видов, используется закаленное стекло (при закалке стекло нагревается до +640 оС и мгновенно охлаждается. В Европе вентилируемые планарные фасады применяются при остеклении бизнес-центров, вокзалов и общественных зданий. На этапе реконструкции планарные фасады могут сочетаться с классическими старыми зданиями. Часто планарный фасад не является ограждающей конструкцией всего здания, а используется для акцентирования главного фасада или входа. Воздушная прослойка между стеклом и стеной позволяет вентилировать помещения за счет создания направленного конвекционного потока, а также создавать оптимальные условия для отвода влаги из утеплителя основной стены. Cистемы остекления: на зажимах (состоит из опорных деталей для опирания стекла, которое снаружи фиксируется планками) и «спайдерная» (реализуется точечным опиранием стекла на круглую головку, что требует сверления стекла. Исходя из /2/ и от автора: при пожаре возможно быстрое замыкание стекла в металлической структуре и его разрыв в зоне отверстий с последующим обрушением. Решение проблемы в устройстве шарового шарнира в точечном креплении спайдера, достаточные размеры шва между стеклами, установка силиконовых прокладок в отверстиях для исключения контакта стекла и металла.

Некоторые конструктивные решения каркасов ФС

В отношении вентилируемых ФС (СВФ) можно отметить публикацию /16/, где в системе КТС для монтажа предлагается конструкция нового оригинального раздвижного кронштейна из сплава АlMg0,7Si6063 c состоянием поставки (закалка) Т66 позволяющего применять утеплители толщиной до 250мм и на стенах с любыми встречающимися отклонениями от вертикали. При этом каждый элемент крепления (кляммер или скоба) облицовочного материала вставляется в специальный жесткий паз, выполненный на направляющей уже в процессе её изготовления, образуя надежный замок. Наличие в системе КТС скользящих креплений и специальная конструкция деформационных стыков позволяют компенсировать как термические нагрузки, вызванные перепадами температур, так и деформационные, вызванные усадкой и подвижкой самих зданий без передачи усилий на облицовочный материал и на несущий анкер. Надежность крепления плит позволяет надеяться на некоторые преимущества для предотвращения прогрессирующего обрушения, в том числе при пожаре. Огневые испытания, проводимые в ЦНИИСК им.Кучеренко, показали лучшие результаты по сравнению с системами, имеющими конструкцию из нержавеющей стали и жесткое крепление кронштейнов к направляющим. В результате система вентилируемого фасада КТС – 1ВФ получила разрешение на использование в зданиях любого класса конструктивной пожарной опасности без ограничения высотности.

В материале /17/ размещена информация о новой разработке – СВФ «МОРАТ», где несущий каркас системы собирается в кондукторах на стройплощадке в виде двух типов модулей, имеющих от одной до трех степеней свободы регулировки каркаса. Установка и выверка модулей относительно стенового ограждения и архитектурных контуров оконных проемов осуществляется безразметочным способом с использованием около 20% кронштейнов. Остальные уже после выверки модулей выдвигаются к стене и крепятся анкерами. При этом указывается, что система обладает повышенной огнестойкостью (от автора: более конкретной информации, к сожалению, не приведено, поэтому не исключено, что это только предположение разработчиков) в зоне оконных проемов за счет гори

Нет комментариев Добавить комментарий